Rolling friction and rolling resistance

The force that resists the motion of a body rolling on a surface is called the rolling resistance or the rolling friction.

The rolling resistance can be expressed as
$F_{r}=c W$
where
$F_{r}=$ rolling resistance or rolling friction $\left(N, I b_{f}\right)$
$c=$ rolling resistance coefficient - dimensionless (coefficient of rolling friction - CRF)
$W=m a_{g}$
$=$ normal force - or weight - of the body $\left(N, I b_{f}\right)$
$m=$ mass of body $(\mathrm{kg}, \mathrm{lb})$
$a_{g}=$ acceleration of gravity $\left(9.81 \mathrm{~m} / \mathrm{s}^{2}, 32.174 \mathrm{ft} / \mathrm{s}^{2}\right)$
The rolling resistance can alternatively be expressed as
$F_{r}=c_{l} W / r$
where
$c_{l}=$ rolling resistance coefficient - dimension length (coefficient of rolling friction) (mm , in)
$r=$ radius of wheel (mm, in)

Rolling Friction Coefficients

Some typical rolling coefficients:

Rolling Resistance Coefficient		
c	$c_{l}(\mathrm{~mm})$	
$\begin{gathered} 0.001- \\ 0.002 \end{gathered}$	0.5	railroad steel wheels on steel rails
0.001		bicycle tire on wooden track
$\begin{gathered} 0.002- \\ 0.005 \end{gathered}$		low resistance tubeless tires
0.002		bicycle tire on concrete
0.004		bicycle tire on asphalt road
0.005		dirty tram rails
0.006-0.01		truck tire on asphalt
0.008		bicycle tire on rough paved road
0.01-0.015		ordinary car tires on concrete, new asphalt, cobbles small new
0.02		car tires on tar or asphalt
0.02		car tires on gravel - rolled new
0.03		car tires on cobbles - large worn
0.04-0.08		car tire on solid sand, gravel loose worn, soil medium hard
0.2-0.4		car tire on loose sand

Rolling Coefficients Cars

The rolling coefficients for air filled tires on dry roads can be estimated
$c=0.005+(1 / p)\left(0.01+0.0095(v / 100)^{2}\right)$
where
$c=$ rolling coefficient
p = tire pressure (bar)
$v=$ velocity $(\mathrm{km} / \mathrm{h})$

Car Tires

Coefficient of Rolling Resistance

- 1 bar $=10^{5} \mathrm{~Pa}=14.5 \mathrm{psi}$
- $1 \mathrm{~km} / \mathrm{h}=0.6214 \mathrm{mph}$

Example - The Rolling Resistance of a Car on Asphalt

The rolling resistance of a car with weight 1500 kg on asphalt with rolling friction coefficient 0.03 can be estimated as
$F_{r}=0.03(1500 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$
$=441 \mathrm{~N}$
$=\underline{0.44} \mathrm{kN}$

The drag coefficient of an object in a moving fluid

Any object moving through a fluid experiences drag - the net force in the direction of flow due to pressure and shear stress forces on the surface of the object.

The drag force can be expressed as:
$F_{d}=c_{d} 1 / 2 \rho v^{2} A$
where
$F_{d}=$ drag force (N)
$c_{d}=d r a g$ coefficient
$\rho=$ density of fluid ($1.2 \mathrm{~kg} / \mathrm{m}^{3}$ for air at NTP)
$v=$ flow velocity (m / s)
$A=$ characteristic frontal area of the body $\left(m^{2}\right)$
The drag coefficient is a function of several parameters like shape of the body, Reynolds Number for the flow, Froude number, Mach Number and Roughness of the Surface.

The characteristic frontal area $-A$-depends on the body.
Objects drag coefficients are mostly results of experiments. The drag coefficients for some common bodies are indicated below:

Type of Object	Drag Coefficient - cd -	Frontal Area
Laminar flat plate $(\mathrm{Re}=106)$	0.001	
Dolphin	0.0036	wetted area
Turbulent flat plate $(\mathrm{Re}=106)$	0.005	
Subsonic Transport Aircraft	0.012	
Supersonic Fighter, M = 2.5	0.016	
Streamline body	0.04	$\square / 4 \mathrm{~d} 2$
Airplane wing, normal position	0.05	
Long stream-lined body	0.1	
Airplane wing, stalled	0.15	
Modern car like Toyota Prius	0.26	frontal area
Sports car, sloping rear	0.2-0.3	frontal area
Common car like Opel Vectra (class C)	0.29	frontal area
Hollow semi-sphere facing stream	0.38	
Bird	0.4	frontal area
Solid Hemisphere	0.42	$\pi / 4 \mathrm{~d} 2$
Sphere	0.5	

Type of Object	Drag Coefficient - cd -	Frontal Area
Saloon Car, stepped rear	0.4-0.5	frontal area
Convertible, open top	0.6-0.7	frontal area
Bus	0.6-0.8	frontal area
Old Car like a T-ford	0.7-0.9	frontal area
Cube	0.8	s2
Bike racing	0.88	3.9
Bicycle	0.9	
Tractor Trailed Truck	0.96	frontal area
Truck	0.8-1.0	frontal area
Person standing	1.0-1.3	
Bicycle Upright Commuter	1.1	5.5
Thin Disk	1.1	$\pi / 4 \mathrm{~d} 2$
Solid Hemisphere flow normal to flat side	1.17	$\square / 4 \mathrm{~d} 2$
Squared flat plate at 90 deg	1.17	
Wires and cables	1.0-1.3	
Person (upright position)	1.0-1.3	

Type of Object	Drag Coefficient - cd -	Frontal Area
Hollow semi-cylinder opposite stream	1.2	
Ski jumper	$1.2-1.3$	frontal area
Hollow semi-sphere opposite stream	1.42	frontal area
Passenger Train	1.8	
Motorcycle and rider	1.8	
Long flat plate at 90 deg	1.98	
Rectangular box	2.1	

Example - Air Resistance on a Normal Car

The force required to overcome air resistance for a normal family car with drag coefficient 0.29 and frontal area $2 \mathrm{~m}^{2}$ in $90 \mathrm{~km} / \mathrm{h}$ can be calculated as:

$$
\begin{aligned}
F_{d} & =0.291 / 2\left(1.2 \mathrm{~kg} / \mathrm{m}^{3}\right)((90 \mathrm{~km} / \mathrm{h})(1000 \mathrm{~m} / \mathrm{km}) /(3600 \mathrm{~s} / \mathrm{h}))^{2}\left(2 \mathrm{~m}^{2}\right) \\
& =\underline{217.5 \mathrm{~N}}
\end{aligned}
$$

The work done to overcome the air resistance in one hour driving (90 km) can be calculated as

$$
\begin{aligned}
W_{d} & =(217.5 \mathrm{~N})(90 \mathrm{~km})(1000 \mathrm{~m} / \mathrm{km}) \\
& =\underline{19575000}(\mathrm{Nm}, \mathrm{~J})
\end{aligned}
$$

The power required to overcome the air resistance when driving $90 \mathrm{~km} / \mathrm{h}$ can be calculated as

$$
\begin{aligned}
P_{d} & =(217.5 \mathrm{~N})(90 \mathrm{~km} / \mathrm{h})(1000 \mathrm{~m} / \mathrm{km})(1 / 3600 \mathrm{~h} / \mathrm{s}) \\
& =\underline{5436}(\mathrm{Nm} / \mathrm{s}, \mathrm{~J} / \mathrm{s}, \mathrm{~W}) \\
& =\underline{5.4}(\mathrm{~kW})
\end{aligned}
$$

Power, torque, efficiency and wheel force

Engine Power

Required power from an engine to keep a car at constant speed can be calculated as

$$
\begin{equation*}
P=F_{T} v / \eta \tag{1}
\end{equation*}
$$

where
$P=$ engine power (W)
$F_{T}=$ total forces acting on the car - rolling resistance force, gradient resistance force and aerodynamic drag resistance (N)
$v=$ velocity of the car (m / s)
$\eta=$ overall efficiency in the transmission, normally ranging 0.85 (low gear) -0.9 (direct drive)

For a car that accelerates the acceleration force must be added to the total force.

Example - Car and required Engine Power

The required engine power for a car driving on a flat surface with constant speed 90 km / h with an aerodynamic resistance force 250 N and rolling resistance force 400 N and overall efficiency 0.85 - can be calculated as

$$
\begin{aligned}
P & =((250 \mathrm{~N})+(400 \mathrm{~N}))(90 \mathrm{~km} / \mathrm{h})(1000 \mathrm{~m} / \mathrm{km})(1 / 3600 \mathrm{~h} / \mathrm{s}) / 0.85 \\
& =19118 \mathrm{~W} \\
& =\underline{19} \mathrm{~kW}
\end{aligned}
$$

Engine Torque or Moment

Engine torque or moment can be calculated

$$
\begin{align*}
T & =P /\left(2 \pi n_{r p s}\right) \\
& =0.159 P / n_{r p s} \\
& =P /\left(2 \pi\left(n_{r p m} / 60\right)\right) \\
& =9.55 P / n_{r p m} \tag{2}
\end{align*}
$$

where
$T=$ torque or moment (Nm)
$n_{r p s}=$ engine speed (rps, rev/sec)
$n_{\text {rpm }}=$ engine speed (rpm, rev/min)

Example - Car and required Engine Moment

The moment delivered by the motor in the car above with the engine running at speed 1500 rpm can be calculated as

$$
\begin{aligned}
T & =9.55(19118 \mathrm{~W}) /(1500 \mathrm{rpm}) \\
& =\underline{121} \mathrm{Nm}
\end{aligned}
$$

Wheel Force

The total force (1) acting on the car is equal to the traction force between the driving wheels and the road surface:
$F_{w}=F_{T}$
where
$F_{w}=$ force acting between driving wheels and road surface (N)
The traction force can be expressed with engine torque and velocity and wheels sizes and velocities:
$F_{w}=F_{T}$

$$
\begin{align*}
& =(T \eta / r)\left(n_{r p s} / n_{w_{-} r p s}\right) \\
& =(T \eta / r)\left(n_{r p m} / n_{w_{-} r p m}\right) \\
& =(2 T \eta / d)\left(n_{r p m} / n_{w_{-} r p m}\right) \tag{3}
\end{align*}
$$

$r=$ wheel radius (m)
$d=$ wheel diameter (m)
$n_{w_{-} r p s}=$ wheel speed (rps, rev/sec)
$n_{w_{-} r p m}=$ wheel speed (rpm, rev/min)
Note that curved driving adds a centripetal force to the total force acting between the wheels and the road surface.

