Rolling friction and rolling resistance

The force that resists the motion of a body rolling on a surface is called the **rolling resistance** or the **rolling friction**.

The rolling resistance can be expressed as

 $F_r = c W \tag{1}$

where

 F_r = rolling resistance or rolling friction (N, lb_f)

c = rolling resistance coefficient - dimensionless (coefficient of rolling friction - CRF)

 $W = m a_g$

= normal force - or <u>weight</u> - of the body (N, Ib_f)

m = mass of body (kg, lb)

 $a_g = \frac{acceleration \ of \ gravity}{(9.81 \ m/s^2, \ 32.174 \ ft/s^2)}$

The rolling resistance can alternatively be expressed as

 $F_r = c_l W / r \tag{2}$

where

 c_l = rolling resistance coefficient - dimension length (coefficient of rolling friction) (mm, in)

r = radius of wheel (mm, in)

Rolling Friction Coefficients

Some typical rolling coefficients:

Rolling Resistance Coefficient		
с	c _l (mm)	
0.001 - 0.002	0.5	railroad steel wheels on steel rails
0.001		bicycle tire on wooden track
0.002 - 0.005		low resistance tubeless tires
0.002		bicycle tire on concrete
0.004		bicycle tire on asphalt road
0.005		dirty tram rails
0.006 - 0.01		truck tire on asphalt
0.008		bicycle tire on rough paved road
0.01 - 0.015		ordinary car tires on concrete, new asphalt, cobbles small new
0.02		car tires on tar or asphalt
0.02		car tires on gravel - rolled new
0.03		car tires on cobbles - large worn
0.04 - 0.08		car tire on solid sand, gravel loose worn, soil medium hard
0.2 - 0.4		car tire on loose sand

Rolling Coefficients Cars

The rolling coefficients for air filled tires on dry roads can be estimated

$$c = 0.005 + (1 / p) (0.01 + 0.0095 (v / 100)^2)$$

where

- c = rolling coefficient
- *p* = *tire pressure* (*bar*)
- v = velocity (km/h)

Car Tires

Coefficient of Rolling Resistance

- $1 \text{ bar} = 10^5 \text{ Pa} = 14.5 \text{ psi}$
- $1 \, km/h = 0.6214 \, mph$

Example - The Rolling Resistance of a Car on Asphalt

The rolling resistance of a car with weight 1500 kg on asphalt with rolling friction coefficient 0.03 can be estimated as

 $F_r = 0.03 \ (1500 \ kg) \ (9.81 \ m/s^2)$

- = <u>441</u> N
- = <u>0.44</u> kN

The drag coefficient of an object in a moving fluid

Any object moving through a fluid experiences drag - the net force in the direction of flow due to pressure and shear stress forces on the surface of the object.

The drag force can be expressed as:

$F_d = c_d \ 1/2 \ \rho \ v^2 \ A$	(1)
------------------------------------	-----

where

 $F_d = drag \ force \ (N)$

*c*_d = *drag coefficient*

- $\rho = \underline{density \ of \ fluid} \ (1.2 \ kg/m^3 \ for \ air \ at \ \underline{NTP})$
- $v = flow \ velocity \ (m/s)$
- A = characteristic frontal area of the body (m²)

The drag coefficient is a function of several parameters like shape of the body, <u>Reynolds Number</u> for the flow, <u>Froude number</u>, <u>Mach Number</u> and <u>Roughness of the Surface</u>.

The characteristic frontal area - A - depends on the body.

Objects drag coefficients are mostly results of experiments. The drag coefficients for some common bodies are indicated below:

Type of Object	Drag Coefficient - cd -	Frontal Area
Laminar flat plate (Re=106)	0.001	
Dolphin	0.0036	wetted area
Turbulent flat plate (Re=106)	0.005	
Subsonic Transport Aircraft	0.012	
Supersonic Fighter,M=2.5	0.016	
Streamline body	0.04	п / 4 d2
Airplane wing, normal position	0.05	
Long stream-lined body	0.1	
Airplane wing, stalled	0.15	
Modern car like Toyota Prius	0.26	frontal area
Sports car, sloping rear	0.2 - 0.3	frontal area
Common car like Opel Vectra (class C)	0.29	frontal area
Hollow semi-sphere facing stream	0.38	
Bird	0.4	frontal area
Solid Hemisphere	0.42	п / 4 d2
Sphere	0.5	

Type of Object	Drag Coefficient - cd -	Frontal Area
Saloon Car, stepped rear	0.4 - 0.5	frontal area
Convertible, open top	0.6 - 0.7	frontal area
Bus	0.6 - 0.8	frontal area
Old Car like a T-ford	0.7 - 0.9	frontal area
Cube	0.8	s2
Bike racing	0.88	3.9
Bicycle	0.9	
Tractor Trailed Truck	0.96	frontal area
Truck	0.8 - 1.0	frontal area
Person standing	1.0 - 1.3	
Bicycle Upright Commuter	1.1	5.5
Thin Disk	1.1	п / 4 d2
Solid Hemisphere flow normal to flat side	1.17	п / 4 d2
Squared flat plate at 90 deg	1.17	
Wires and cables	1.0 - 1.3	
Person (upright position)	1.0 - 1.3	

Type of Object	Drag Coefficient - cd -	Frontal Area
Hollow semi-cylinder opposite stream	1.2	
Ski jumper	1.2 - 1.3	
Hollow semi-sphere opposite stream	1.42	
Passenger Train	1.8	frontal area
Motorcycle and rider	1.8	frontal area
Long flat plate at 90 deg	1.98	
Rectangular box	2.1	

Example - Air Resistance on a Normal Car

The <u>force</u> required to overcome air resistance for a normal family car with drag coefficient 0.29 and frontal area 2 m^2 in 90 km/h can be calculated as:

 $F_d = 0.29 \ 1/2 \ (1.2 \ kg/m^3) \ ((90 \ km/h) \ (1000 \ m/km) \ / \ (3600 \ s/h))^2 \ (2 \ m^2)$

The <u>work</u> done to overcome the air resistance in one hour driving (90 km) can be calculated as

 $W_d = (217.5 \text{ N}) (90 \text{ km}) (1000 \text{ m/km})$

= <u>19575000</u> (Nm, J)

The <u>power</u> required to overcome the air resistance when driving 90 km/h can be calculated as

 $P_d = (217.5 \text{ N}) (90 \text{ km/h}) (1000 \text{ m/km}) (1/3600 \text{ h/s})$

= <u>5436</u> (Nm/s, J/s, W)

= <u>5.4</u> (kW)

Power, torque, efficiency and wheel force

Engine Power

Required power from an engine to keep a car at constant speed can be calculated as

 $P = F_T v / \eta \tag{1}$

where

P = engine power(W)

 F_T = total forces acting on the car - <u>rolling resistance force</u>, <u>gradient resistance</u> force and <u>aerodynamic drag resistance</u> (N)

v = velocity of the car (m/s)

 η = overall efficiency in the transmission, normally ranging 0.85 (low gear) - 0.9 (direct drive)

For a car that accelerates <u>the acceleration force</u> must be added to the total force.

Example - Car and required Engine Power

The required engine power for a car driving on a flat surface with constant speed 90 km/h with an <u>aerodynamic resistance force</u> 250 N and <u>rolling resistance force</u> 400 N and overall efficiency 0.85 - can be calculated as

P = ((250 N) + (400 N)) (90 km/h) (1000 m/km) (1/3600 h/s) / 0.85

(2)

= 19118 W

= <u>19</u> kW

Engine Torque or Moment

Engine torque or moment can be calculated

$$T = P / (2 \pi n_{rps})$$

= 0.159 P / n_{rps}
= P / (2 \pi (n_{rpm} / 60))
= 9.55 P / n_{rpm}

where

T = torque or moment (*Nm*)

*n*_{rps} = engine speed (rps, rev/sec)

*n*_{*rpm*} = engine speed (*rpm*, *rev/min*)

Example - Car and required Engine Moment

The moment delivered by the motor in the car above with the engine running at speed *1500 rpm* can be calculated as

T = 9.55 (19118 W) / (1500 rpm) = <u>121</u> Nm

Wheel Force

The total force (1) acting on the car is equal to the traction force between the driving wheels and the road surface:

 $F_w = F_T$

where

 F_w = force acting between driving wheels and road surface (N)

The traction force can be expressed with engine torque and velocity and wheels sizes and velocities:

 $F_w = F_T$

= $(T \eta / r) (n_{rps} / n_{w_{rps}})$

= $(T \eta / r) (n_{rpm} / n_{w_{rpm}})$

 $= (2 T \eta / d) (n_{rpm} / n_{w_{rpm}})$ (3)

r = wheel radius (m)

 $d = wheel \, diameter \, (m)$

n_{w_rps} = wheel speed (rps, rev/sec)

*n*_{*w*_*rpm*} = *wheel speed (rpm, rev/min)*

Note that curved driving adds a <u>centripetal force</u> to the total force acting between the wheels and the road surface.